Comparison of predictor approaches for longitudinal binary outcomes: application to anesthesiology data

نویسندگان

  • Anil Aktas Samur
  • Nesil Coskunfirat
  • Osman Saka
چکیده

Longitudinal data with binary repeated responses are now widespread among clinical studies and standard statistical analysis methods have become inadequate in the answering of clinical hypotheses. Instead of such conventional approaches, statisticians have started proposing better techniques, such as the Generalized Estimating Equations (GEE) approach and Generalized Linear Mixed Models (GLMM) technique. In this research, we undertook a comparative study of modeling binary repeated responses using an anesthesiology dataset which has 375 patient data with clinical variables. We modeled the relationship between hypotension and age, gender, surgical department, positions of patients during surgery, diastolic blood pressure, pulse, electrocardiography and doses of Marcain-heavy, chirocaine, fentanyl, and midazolam. Moreover, parameter estimates between the GEE and the GLMM were compared. The parameter estimates, except time-after, Marcain-Heavy, and Fentanyl from the GLMM, are larger than those from GEE. The standard errors from the GLMM are larger than those from GEE. GLMM appears to be more suitable approach than the GEE approach for the analysis hypotension during spinal anesthesia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Extension of Logic regression to Longitudinal data: Transition Logic Regression

Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...

متن کامل

Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task

In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

An Alternative to the Beta-Binomial Distribution with Application in Developmental Toxicology

The beta-binomial distribution is resulted when the probability of success per trial in the binomial distribution varies in successive trials and the mixing distribution is from the beta family. For experiments with binary outcomes, often it may happen that observations exhibit some extra binomial variation and occur in clusters. In such experiments the beta-binomial distribution can generally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014